The solute carrier SLC7A1 may act as a protein transporter at the blood-brain barrier

Research output: Contribution to journalJournal articleResearchpeer-review


  • Fulltext

    Final published version, 5.04 MB, PDF document

  • Magdalena Kurtyka
  • Frank Wessely
  • Sarah Bau
  • Eseoghene Ifie
  • Liqun He
  • Nienke M. de Wit
  • Maximilian Keller
  • Caleb Webber
  • Helga E. de Vries
  • Olaf Ansorge
  • Christer Betsholtz
  • Marijke De Bock
  • Catarina Chaves
  • Morten S. Nielsen
  • Winfried Neuhaus
  • Robert D. Bell
  • Tamás Letoha
  • Axel H. Meyer
  • Germán Leparc
  • Martin Lenter
  • Dominique Lesuisse
  • Zameel M. Cader
  • Stephen T. Buckley
  • Irena Loryan
  • Claus U. Pietrzik

Despite extensive research, targeted delivery of substances to the brain still poses a great challenge due to the selectivity of the blood-brain barrier (BBB). Most molecules require either carrier- or receptor-mediated transport systems to reach the central nervous system (CNS). These transport systems form attractive routes for the delivery of therapeutics into the CNS, yet the number of known brain endothelium-enriched receptors allowing the transport of large molecules into the brain is scarce. Therefore, to identify novel BBB targets, we combined transcriptomic analysis of human and murine brain endothelium and performed a complex screening of BBB-enriched genes according to established selection criteria. As a result, we propose the high-affinity cationic amino acid transporter 1 (SLC7A1) as a novel candidate for transport of large molecules across the BBB. Using RNA sequencing and in situ hybridization assays, we demonstrated elevated SLC7A1 gene expression in both human and mouse brain endothelium. Moreover, we confirmed SLC7A1 protein expression in brain vasculature of both young and aged mice. To assess the potential of SLC7A1 as a transporter for larger proteins, we performed internalization and transcytosis studies using a radiolabelled or fluorophore-labelled anti-SLC7A1 antibody. Our results showed that SLC7A1 internalised a SLC7A1-specific antibody in human colorectal carcinoma (HCT116) cells. Moreover, transcytosis studies in both immortalised human brain endothelial (hCMEC/D3) cells and primary mouse brain endothelial cells clearly demonstrated that SLC7A1 effectively transported the SLC7A1-specific antibody from luminal to abluminal side. Therefore, here in this study, we present for the first time the SLC7A1 as a novel candidate for transport of larger molecules across the BBB.

Original languageEnglish
Article number151406
JournalEuropean Journal of Cell Biology
Issue number2
Number of pages14
Publication statusPublished - 2024

Bibliographical note

Publisher Copyright:
© 2024 The Authors

    Research areas

  • BBB, brain drug delivery, brain therapeutics, CAT-1, SLC7A1, solute carriers

ID: 387935397