Solvent change co-precipitation with hydroxypropyl methylcellulose phthalate to improve dissolution characteristics of a poorly water-soluble drug
Research output: Contribution to journal › Journal article › Research › peer-review
Standard
Solvent change co-precipitation with hydroxypropyl methylcellulose phthalate to improve dissolution characteristics of a poorly water-soluble drug. / Sertsou, Gabriel; Butler, James; Hempenstall, John; Rades, Thomas.
In: Journal of Pharmacy and Pharmacology, Vol. 54, No. 8, 08.2002, p. 1041-7.Research output: Contribution to journal › Journal article › Research › peer-review
Harvard
APA
Vancouver
Author
Bibtex
}
RIS
TY - JOUR
T1 - Solvent change co-precipitation with hydroxypropyl methylcellulose phthalate to improve dissolution characteristics of a poorly water-soluble drug
AU - Sertsou, Gabriel
AU - Butler, James
AU - Hempenstall, John
AU - Rades, Thomas
PY - 2002/8
Y1 - 2002/8
N2 - Research compound GWX belongs to biopharmaceutical classification system type II, and hence shows dissolution-rate-limited absorption. To improve its dissolution performance, GWX was formulated as a co-precipitate with hydroxypropyl methylcellulose phthalate (HPMCP). Co-precipitates with various drug-HPMCP ratios were prepared and characterised using modulated differential scanning calorimetry (MDSC), X-ray powder diffraction, HPLC and dissolution testing. Co-precipitates with 1:9 and 2:8 drug-HPMCP ratios showed the highest extent of dissolution after both 5 and 90 min, followed by 3:7, 4:6, and 5:5 drug-HPMCP co-precipitates, in respective order. Co-precipitates with drug-HPMCP ratios of 6:4 and greater showed no significant improvement in dissolution over crystalline drug alone. The amounts of crystalline and amorphous drug in co-precipitates, as determined by MDSC, and HPLC quantification of the total amount of drug in co-precipitates were used to determine the amount of drug incorporated into solid solution. It was found that dissolution rate and extent was correlated to the amount of drug incorporated into amorphous solid solution for the 1:9 to 5:5 drug-HPMCP ratio co-precipitates. Amorphous drug alone and physical mixtures of drug and HPMCP showed very little and no significant improvement in dissolution rate or extent, respectively, above crystalline drug alone. Amorphous drug alone re-crystallized to a large extent within 1 min of contact with the dissolution medium, whereas 4:6 drug-HPMCP co-precipitate showed a lower degree of re-crystallization and 2:8 drug-HPMCP co-precipitate showed very little re-crystallization. It was concluded that the likely mechanisms of improved dissolution of low drug-HPMCP ratio co-precipitates were improved wetting or increased surface area for mass transfer, thermodynamically enhanced dissolution of a higher energy amorphous form and inhibition of re-crystallization, when drug was incorporated into solid solution.
AB - Research compound GWX belongs to biopharmaceutical classification system type II, and hence shows dissolution-rate-limited absorption. To improve its dissolution performance, GWX was formulated as a co-precipitate with hydroxypropyl methylcellulose phthalate (HPMCP). Co-precipitates with various drug-HPMCP ratios were prepared and characterised using modulated differential scanning calorimetry (MDSC), X-ray powder diffraction, HPLC and dissolution testing. Co-precipitates with 1:9 and 2:8 drug-HPMCP ratios showed the highest extent of dissolution after both 5 and 90 min, followed by 3:7, 4:6, and 5:5 drug-HPMCP co-precipitates, in respective order. Co-precipitates with drug-HPMCP ratios of 6:4 and greater showed no significant improvement in dissolution over crystalline drug alone. The amounts of crystalline and amorphous drug in co-precipitates, as determined by MDSC, and HPLC quantification of the total amount of drug in co-precipitates were used to determine the amount of drug incorporated into solid solution. It was found that dissolution rate and extent was correlated to the amount of drug incorporated into amorphous solid solution for the 1:9 to 5:5 drug-HPMCP ratio co-precipitates. Amorphous drug alone and physical mixtures of drug and HPMCP showed very little and no significant improvement in dissolution rate or extent, respectively, above crystalline drug alone. Amorphous drug alone re-crystallized to a large extent within 1 min of contact with the dissolution medium, whereas 4:6 drug-HPMCP co-precipitate showed a lower degree of re-crystallization and 2:8 drug-HPMCP co-precipitate showed very little re-crystallization. It was concluded that the likely mechanisms of improved dissolution of low drug-HPMCP ratio co-precipitates were improved wetting or increased surface area for mass transfer, thermodynamically enhanced dissolution of a higher energy amorphous form and inhibition of re-crystallization, when drug was incorporated into solid solution.
KW - Biological Availability
KW - Chemical Precipitation
KW - Chemistry, Pharmaceutical
KW - Chromatography, High Pressure Liquid
KW - Methylcellulose
KW - Pharmaceutical Preparations
KW - Solubility
KW - X-Ray Diffraction
U2 - 10.1211/002235702320266181
DO - 10.1211/002235702320266181
M3 - Journal article
C2 - 12195817
VL - 54
SP - 1041
EP - 1047
JO - Journal of Pharmacy and Pharmacology
JF - Journal of Pharmacy and Pharmacology
SN - 0022-3573
IS - 8
ER -
ID: 46408489