Real-time in vitro dissolution of 5-aminosalicylic acid from single ethyl cellulose coated extrudates studied by UV imaging

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Real-time in vitro dissolution of 5-aminosalicylic acid from single ethyl cellulose coated extrudates studied by UV imaging. / Gaunø, Mette Høg; Vilhelmsen, Thomas; Larsen, Crilles Casper; Bøtker, Johan Peter; Wittendorff, Jørgen; Rantanen, Jukka; Ostergaard, Jesper.

In: Journal of Pharmaceutical and Biomedical Analysis, Vol. 83, 09.2013, p. 49-56.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Gaunø, MH, Vilhelmsen, T, Larsen, CC, Bøtker, JP, Wittendorff, J, Rantanen, J & Ostergaard, J 2013, 'Real-time in vitro dissolution of 5-aminosalicylic acid from single ethyl cellulose coated extrudates studied by UV imaging', Journal of Pharmaceutical and Biomedical Analysis, vol. 83, pp. 49-56. https://doi.org/10.1016/j.jpba.2013.04.028

APA

Gaunø, M. H., Vilhelmsen, T., Larsen, C. C., Bøtker, J. P., Wittendorff, J., Rantanen, J., & Ostergaard, J. (2013). Real-time in vitro dissolution of 5-aminosalicylic acid from single ethyl cellulose coated extrudates studied by UV imaging. Journal of Pharmaceutical and Biomedical Analysis, 83, 49-56. https://doi.org/10.1016/j.jpba.2013.04.028

Vancouver

Gaunø MH, Vilhelmsen T, Larsen CC, Bøtker JP, Wittendorff J, Rantanen J et al. Real-time in vitro dissolution of 5-aminosalicylic acid from single ethyl cellulose coated extrudates studied by UV imaging. Journal of Pharmaceutical and Biomedical Analysis. 2013 Sep;83:49-56. https://doi.org/10.1016/j.jpba.2013.04.028

Author

Gaunø, Mette Høg ; Vilhelmsen, Thomas ; Larsen, Crilles Casper ; Bøtker, Johan Peter ; Wittendorff, Jørgen ; Rantanen, Jukka ; Ostergaard, Jesper. / Real-time in vitro dissolution of 5-aminosalicylic acid from single ethyl cellulose coated extrudates studied by UV imaging. In: Journal of Pharmaceutical and Biomedical Analysis. 2013 ; Vol. 83. pp. 49-56.

Bibtex

@article{23b79d5ebaf644a8a4a81831281f5fb4,
title = "Real-time in vitro dissolution of 5-aminosalicylic acid from single ethyl cellulose coated extrudates studied by UV imaging",
abstract = "The purpose of this study was to investigate the in vitro release of 5-aminosalicylic acid from single extrudates by UV imaging and to explore the technique as a visualization tool for detecting film coating defects on extrudates coated with a thin ethyl cellulose layer. 5-Aminosalicylic acid extrudates were film coated with ethyl cellulose in a typical lab system coater equipped with one Wurster partition. Dissolution testing was performed first in a conventional paddle dissolution apparatus and second, in a flow through geometry equipped with a UV imaging system. Selected film coated extrudates from four different coating levels were placed in agarose gels and UV imaging was performed for a total of 240min. Absorbance maps were obtained thus visualizing the release of 5-aminosalicylic acid over time and it was possible to detect a decrease in release as a function of increased ethyl cellulose coating weight gain. Using a calibration curve the released amount was calculated and the individual release profiles for each coating weight gain in general resulted in comparable release profiles. Furthermore, the release profiles were consistent with the dissolution results obtained from the paddle dissolution testing. The release from defect extrudates was visualized by the absorbance maps and the release was highest from the compromised part of the extrudates. UV imaging has proven to be a useful technique to visualize the release of 5-aminosalicylic acid from single film coated extrudates and it has potential for detection of film coating defects.",
author = "Gaun{\o}, {Mette H{\o}g} and Thomas Vilhelmsen and Larsen, {Crilles Casper} and B{\o}tker, {Johan Peter} and J{\o}rgen Wittendorff and Jukka Rantanen and Jesper Ostergaard",
note = "Copyright {\textcopyright} 2013 Elsevier B.V. All rights reserved.",
year = "2013",
month = sep,
doi = "10.1016/j.jpba.2013.04.028",
language = "English",
volume = "83",
pages = "49--56",
journal = "Journal of Pharmaceutical and Biomedical Analysis",
issn = "0731-7085",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - Real-time in vitro dissolution of 5-aminosalicylic acid from single ethyl cellulose coated extrudates studied by UV imaging

AU - Gaunø, Mette Høg

AU - Vilhelmsen, Thomas

AU - Larsen, Crilles Casper

AU - Bøtker, Johan Peter

AU - Wittendorff, Jørgen

AU - Rantanen, Jukka

AU - Ostergaard, Jesper

N1 - Copyright © 2013 Elsevier B.V. All rights reserved.

PY - 2013/9

Y1 - 2013/9

N2 - The purpose of this study was to investigate the in vitro release of 5-aminosalicylic acid from single extrudates by UV imaging and to explore the technique as a visualization tool for detecting film coating defects on extrudates coated with a thin ethyl cellulose layer. 5-Aminosalicylic acid extrudates were film coated with ethyl cellulose in a typical lab system coater equipped with one Wurster partition. Dissolution testing was performed first in a conventional paddle dissolution apparatus and second, in a flow through geometry equipped with a UV imaging system. Selected film coated extrudates from four different coating levels were placed in agarose gels and UV imaging was performed for a total of 240min. Absorbance maps were obtained thus visualizing the release of 5-aminosalicylic acid over time and it was possible to detect a decrease in release as a function of increased ethyl cellulose coating weight gain. Using a calibration curve the released amount was calculated and the individual release profiles for each coating weight gain in general resulted in comparable release profiles. Furthermore, the release profiles were consistent with the dissolution results obtained from the paddle dissolution testing. The release from defect extrudates was visualized by the absorbance maps and the release was highest from the compromised part of the extrudates. UV imaging has proven to be a useful technique to visualize the release of 5-aminosalicylic acid from single film coated extrudates and it has potential for detection of film coating defects.

AB - The purpose of this study was to investigate the in vitro release of 5-aminosalicylic acid from single extrudates by UV imaging and to explore the technique as a visualization tool for detecting film coating defects on extrudates coated with a thin ethyl cellulose layer. 5-Aminosalicylic acid extrudates were film coated with ethyl cellulose in a typical lab system coater equipped with one Wurster partition. Dissolution testing was performed first in a conventional paddle dissolution apparatus and second, in a flow through geometry equipped with a UV imaging system. Selected film coated extrudates from four different coating levels were placed in agarose gels and UV imaging was performed for a total of 240min. Absorbance maps were obtained thus visualizing the release of 5-aminosalicylic acid over time and it was possible to detect a decrease in release as a function of increased ethyl cellulose coating weight gain. Using a calibration curve the released amount was calculated and the individual release profiles for each coating weight gain in general resulted in comparable release profiles. Furthermore, the release profiles were consistent with the dissolution results obtained from the paddle dissolution testing. The release from defect extrudates was visualized by the absorbance maps and the release was highest from the compromised part of the extrudates. UV imaging has proven to be a useful technique to visualize the release of 5-aminosalicylic acid from single film coated extrudates and it has potential for detection of film coating defects.

U2 - 10.1016/j.jpba.2013.04.028

DO - 10.1016/j.jpba.2013.04.028

M3 - Journal article

C2 - 23708430

VL - 83

SP - 49

EP - 56

JO - Journal of Pharmaceutical and Biomedical Analysis

JF - Journal of Pharmaceutical and Biomedical Analysis

SN - 0731-7085

ER -

ID: 49098470