Hot Melt Coating of Amorphous Carvedilol

Research output: Contribution to journalJournal articleResearchpeer-review

Documents

The use of amorphous drug delivery systems is an attractive approach to improve the bioavailability of low molecular weight drug candidates that suffer from poor aqueous solubility. However, the pharmaceutical performance of many neat amorphous drugs is compromised by their tendency for recrystallization during storage and lumping upon dissolution, which may be improved by the application of coatings on amorphous surfaces. In this study, hot melt coating (HMC) as a solvent-free coating method was utilized to coat amorphous carvedilol (CRV) particles with tripalmitin containing 10% (w/w) and 20% (w/w) of polysorbate 65 (PS65) in a fluid bed coater. Lipid coated amorphous particles were assessed in terms of their physical stability during storage and their drug release during dynamic in vitro lipolysis. The release of CRV during in vitro lipolysis was shown to be mainly dependent on the PS65 concentration in the coating layer, with a PS65 concentration of 20% (w/w) resulting in an immediate release profile. The physical stability of the amorphous CRV core, however, was negatively affected by the lipid coating, resulting in the recrystallization of CRV at the interface between the crystalline lipid layer and the amorphous drug core. Our study demonstrated the feasibility of lipid spray coating of amorphous CRV as a strategy to modify the drug release from amorphous systems but at the same time highlights the importance of surface-mediated processes for the physical stability of the amorphous form.

Original languageEnglish
Article number519
JournalPharmaceutics
Volume12
Issue number6
Number of pages13
ISSN1999-4923
DOIs
Publication statusPublished - 2020

    Research areas

  • hot melt coating (HMC), amorphous solids, solid-state, amorphous stability, amorphous drug delivery, dynamic in vitro lipolysis, carvedilol, tripalmitin, SURFACE CRYSTALLIZATION, PHARMACEUTICAL SOLIDS, DRUG FORMULATIONS, DISSOLUTION RATE, DOSAGE FORMS, STABILIZATION, INDOMETHACIN, SOLUBILITY, STRATEGIES, STABILITY

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 248333366