Diacylglycerols from butterfat: Production by glycerolysis and short-path distillation and analysis of physical properties

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Diacylglycerols from butterfat : Production by glycerolysis and short-path distillation and analysis of physical properties. / Yang, T.; Zhang, H.; Mu, Huiling; Sinclair, A.J.; Xu, X.

In: J A O C S, Vol. 81, No. 10, 01.10.2004, p. 979-987.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Yang, T, Zhang, H, Mu, H, Sinclair, AJ & Xu, X 2004, 'Diacylglycerols from butterfat: Production by glycerolysis and short-path distillation and analysis of physical properties', J A O C S, vol. 81, no. 10, pp. 979-987.

APA

Yang, T., Zhang, H., Mu, H., Sinclair, A. J., & Xu, X. (2004). Diacylglycerols from butterfat: Production by glycerolysis and short-path distillation and analysis of physical properties. J A O C S, 81(10), 979-987.

Vancouver

Yang T, Zhang H, Mu H, Sinclair AJ, Xu X. Diacylglycerols from butterfat: Production by glycerolysis and short-path distillation and analysis of physical properties. J A O C S. 2004 Oct 1;81(10):979-987.

Author

Yang, T. ; Zhang, H. ; Mu, Huiling ; Sinclair, A.J. ; Xu, X. / Diacylglycerols from butterfat : Production by glycerolysis and short-path distillation and analysis of physical properties. In: J A O C S. 2004 ; Vol. 81, No. 10. pp. 979-987.

Bibtex

@article{501150e5a9044aec8035b4308810ddbf,
title = "Diacylglycerols from butterfat: Production by glycerolysis and short-path distillation and analysis of physical properties",
abstract = "The aim of this paper was to develop a process for the production of DAG from butterfat through glycerolysis and short-path distillation and to evaluate the physical properties of the DAG in comparison with the original butterfat. Chemical glycerolysis produced a mixture of acylglycerols containing DAG together with MAG and TAG. From the mixture of glycerolysis products, MAG were removed through three consecutive distillations (vacuum <0.001 mbar) at 150°C. TAG were separated from DAG by distillation at 210°C, which gave a product with more than 80% DAG in the distillates. Distillation temperatures had significant effects on acyl migration. The formation of desirable 1,3-DAG was favored at higher temperatures. Under 210°C distillation, the equilibrium ratio of 6:4 was obtained between 1,3-DAG and 1,2(2,3)-DAG. The FA profile of the DAG product was relatively similar to the original butterfat. The total DAG recovery was around 77% in the pilot-scale production. The different patterns of m.p. were observed between butterfat and the DAG fraction produced as well as the MAG fraction collected. Solid fat content profiles of the DAG fraction and its mixtures with rapeseed oil possessed trends similar to those of the corresponding butterfat and its mixtures with rapeseed oil. Compared with butterfat, the DAG fraction behaved differently in its thermal profiles, crystallization patterns, and rheological properties; for example, the dropping point was 13°C higher for the latter than for the former, and the crystal pattern was mostly {\ss} form for the latter, whereas the former was the {\ss}' form.",
author = "T. Yang and H. Zhang and Huiling Mu and A.J. Sinclair and X. Xu",
year = "2004",
month = oct,
day = "1",
language = "English",
volume = "81",
pages = "979--987",
journal = "Oil &amp; Soap",
issn = "0003-021X",
publisher = "Springer",
number = "10",

}

RIS

TY - JOUR

T1 - Diacylglycerols from butterfat

T2 - Production by glycerolysis and short-path distillation and analysis of physical properties

AU - Yang, T.

AU - Zhang, H.

AU - Mu, Huiling

AU - Sinclair, A.J.

AU - Xu, X.

PY - 2004/10/1

Y1 - 2004/10/1

N2 - The aim of this paper was to develop a process for the production of DAG from butterfat through glycerolysis and short-path distillation and to evaluate the physical properties of the DAG in comparison with the original butterfat. Chemical glycerolysis produced a mixture of acylglycerols containing DAG together with MAG and TAG. From the mixture of glycerolysis products, MAG were removed through three consecutive distillations (vacuum <0.001 mbar) at 150°C. TAG were separated from DAG by distillation at 210°C, which gave a product with more than 80% DAG in the distillates. Distillation temperatures had significant effects on acyl migration. The formation of desirable 1,3-DAG was favored at higher temperatures. Under 210°C distillation, the equilibrium ratio of 6:4 was obtained between 1,3-DAG and 1,2(2,3)-DAG. The FA profile of the DAG product was relatively similar to the original butterfat. The total DAG recovery was around 77% in the pilot-scale production. The different patterns of m.p. were observed between butterfat and the DAG fraction produced as well as the MAG fraction collected. Solid fat content profiles of the DAG fraction and its mixtures with rapeseed oil possessed trends similar to those of the corresponding butterfat and its mixtures with rapeseed oil. Compared with butterfat, the DAG fraction behaved differently in its thermal profiles, crystallization patterns, and rheological properties; for example, the dropping point was 13°C higher for the latter than for the former, and the crystal pattern was mostly ß form for the latter, whereas the former was the ß' form.

AB - The aim of this paper was to develop a process for the production of DAG from butterfat through glycerolysis and short-path distillation and to evaluate the physical properties of the DAG in comparison with the original butterfat. Chemical glycerolysis produced a mixture of acylglycerols containing DAG together with MAG and TAG. From the mixture of glycerolysis products, MAG were removed through three consecutive distillations (vacuum <0.001 mbar) at 150°C. TAG were separated from DAG by distillation at 210°C, which gave a product with more than 80% DAG in the distillates. Distillation temperatures had significant effects on acyl migration. The formation of desirable 1,3-DAG was favored at higher temperatures. Under 210°C distillation, the equilibrium ratio of 6:4 was obtained between 1,3-DAG and 1,2(2,3)-DAG. The FA profile of the DAG product was relatively similar to the original butterfat. The total DAG recovery was around 77% in the pilot-scale production. The different patterns of m.p. were observed between butterfat and the DAG fraction produced as well as the MAG fraction collected. Solid fat content profiles of the DAG fraction and its mixtures with rapeseed oil possessed trends similar to those of the corresponding butterfat and its mixtures with rapeseed oil. Compared with butterfat, the DAG fraction behaved differently in its thermal profiles, crystallization patterns, and rheological properties; for example, the dropping point was 13°C higher for the latter than for the former, and the crystal pattern was mostly ß form for the latter, whereas the former was the ß' form.

UR - http://www.scopus.com/inward/record.url?scp=10244253981&partnerID=8YFLogxK

M3 - Journal article

AN - SCOPUS:10244253981

VL - 81

SP - 979

EP - 987

JO - Oil &amp; Soap

JF - Oil &amp; Soap

SN - 0003-021X

IS - 10

ER -

ID: 45572845