A novel sensitive sheathless CE-MS device for peptide and protein analysis

Research output: Contribution to conferenceConference abstract for conferenceResearch

Standard

A novel sensitive sheathless CE-MS device for peptide and protein analysis. / Nguyen, Tam T. T. N.; Petersen, Nickolaj J.; Rand, Kasper Dyrberg.

2016. Abstract from 64th ASMS Conference, United States.

Research output: Contribution to conferenceConference abstract for conferenceResearch

Harvard

Nguyen, TTTN, Petersen, NJ & Rand, KD 2016, 'A novel sensitive sheathless CE-MS device for peptide and protein analysis', 64th ASMS Conference, United States, 05/06/2016 - 09/06/2016.

APA

Nguyen, T. T. T. N., Petersen, N. J., & Rand, K. D. (2016). A novel sensitive sheathless CE-MS device for peptide and protein analysis. Abstract from 64th ASMS Conference, United States.

Vancouver

Nguyen TTTN, Petersen NJ, Rand KD. A novel sensitive sheathless CE-MS device for peptide and protein analysis. 2016. Abstract from 64th ASMS Conference, United States.

Author

Nguyen, Tam T. T. N. ; Petersen, Nickolaj J. ; Rand, Kasper Dyrberg. / A novel sensitive sheathless CE-MS device for peptide and protein analysis. Abstract from 64th ASMS Conference, United States.1 p.

Bibtex

@conference{693a7fb24f2249d480e3cf6b5484f9ba,
title = "A novel sensitive sheathless CE-MS device for peptide and protein analysis",
abstract = "IntroductionCE-MS has shown considerable potential in protein research and pharmaceutical development, however, technical challenges of hyphenation of CE with MS have limited its use. Here, we have developed a sensitive CE-MS setup for peptide and protein analysis, that employs a novel and low-cost sheathless CE-MS interface and a poly(ethyleneglycol)-coated capillary. Using the CE-MS setup, we have achieved fast and efficient separation and sensitive mass analysis of individual components of a complex sample of pharmaceutically relevant human proteins including insulin, tissue factor, α-synuclein and a tryptic digest of bovine serum albumin. We have furthermore compared the performance of the CE-MS technique to UPLC-MS and demonstrate significant advantages of the CE-MS setup in terms of analysis time, sample consumption and separation capacity.MethodsThe sheathless CE-MS interface is based on the generation of an electric contact for both CE and ESI voltage through a narrow fracture close to the end of the CE capillary. The interface was mounted on a Nano ESI source of a hybrid Q-TOF instrument. To eliminate unwanted surface adsorption and/or interactions between polypeptide analytes and the inner capillary wall (L= 65 cm, 50 µm I.D.), a PEG coated capillary was made using novel covalent and electrostatically adsorbed coating method. Background electrolyte solution containing 0.1% formic acid was used throughout unless specified otherwise. Samples were injected hydrodynamically (50 mbar, 10 s) and the applied separation voltage was +30 kV for 12 min. No pre-treatment of sample mixtures analyzed was needed.Preliminary DataThe simple and low-cost interface design allowed the generation of a stable ESI spray capable of ionization at low nanoliter flow-rates (45-90 nL/min) for high sensitivity MS analysis. By analysis of a model peptide (Leucine Enkephalin), a limit of detection (LOD) of 0.045 pmol/µL (corresponding to 67 attomol in a sample volume of ~ 15 nL) was obtained. The merit of the CE-MS approach was demonstrated by analysis of bovine serum albumin (BSA) tryptic peptides. A well-resolved separation profile was achieved and comparable sequence coverage was obtained by the CE-MS method (70%) compared to a representative UPLC-MS method (74%). Moreover, very low sample consumption and shorter analysis time makes the CE-MS method more preferable. The CE-MS setup was subsequently used to analyse a mixture of proteins of differing size and complexity consisting of insulin, tissue factor, α-synuclein and BSA. Efficient separation with very narrow peak widths, comparable to those obtained for small peptides, and high quality protein ESI mass spectra could be achieved using only a small amount of sample (30 fmol). Our findings underscore a considerable potential of the current CE-MS setup for high-sensitivity analysis of samples containing complex mixtures of intact proteins. Furthermore, the method was successfully applied to analyze a sample containing only 30 fmol of an intact therapeutic mAb (Rituximab) suggesting significant real-world applicability in biopharmaceutical research. Finally, by employing a native CE buffer (ammonium acetate, pH 6), we show that the CE-MS interface facilitates gentle ESI of proteins, opening up for native MS applications in combination with ion mobility and other gas-phase techniques to probe the conformational properties of proteins analysed by CE-MS.Novel AspectA novel, simple and low-cost sheathless CE-MS interface for fast and sensitive analysis of complex peptide/protein mixtures",
author = "Nguyen, {Tam T. T. N.} and Petersen, {Nickolaj J.} and Rand, {Kasper Dyrberg}",
year = "2016",
month = jun,
day = "8",
language = "English",
note = "64th ASMS Conference : 64th ASMS Conference on Mass Spectrometry and Allied Topics ; Conference date: 05-06-2016 Through 09-06-2016",
url = "http://www.asms.org/conferences/annual-conference/conference-program",

}

RIS

TY - ABST

T1 - A novel sensitive sheathless CE-MS device for peptide and protein analysis

AU - Nguyen, Tam T. T. N.

AU - Petersen, Nickolaj J.

AU - Rand, Kasper Dyrberg

N1 - Conference code: 64

PY - 2016/6/8

Y1 - 2016/6/8

N2 - IntroductionCE-MS has shown considerable potential in protein research and pharmaceutical development, however, technical challenges of hyphenation of CE with MS have limited its use. Here, we have developed a sensitive CE-MS setup for peptide and protein analysis, that employs a novel and low-cost sheathless CE-MS interface and a poly(ethyleneglycol)-coated capillary. Using the CE-MS setup, we have achieved fast and efficient separation and sensitive mass analysis of individual components of a complex sample of pharmaceutically relevant human proteins including insulin, tissue factor, α-synuclein and a tryptic digest of bovine serum albumin. We have furthermore compared the performance of the CE-MS technique to UPLC-MS and demonstrate significant advantages of the CE-MS setup in terms of analysis time, sample consumption and separation capacity.MethodsThe sheathless CE-MS interface is based on the generation of an electric contact for both CE and ESI voltage through a narrow fracture close to the end of the CE capillary. The interface was mounted on a Nano ESI source of a hybrid Q-TOF instrument. To eliminate unwanted surface adsorption and/or interactions between polypeptide analytes and the inner capillary wall (L= 65 cm, 50 µm I.D.), a PEG coated capillary was made using novel covalent and electrostatically adsorbed coating method. Background electrolyte solution containing 0.1% formic acid was used throughout unless specified otherwise. Samples were injected hydrodynamically (50 mbar, 10 s) and the applied separation voltage was +30 kV for 12 min. No pre-treatment of sample mixtures analyzed was needed.Preliminary DataThe simple and low-cost interface design allowed the generation of a stable ESI spray capable of ionization at low nanoliter flow-rates (45-90 nL/min) for high sensitivity MS analysis. By analysis of a model peptide (Leucine Enkephalin), a limit of detection (LOD) of 0.045 pmol/µL (corresponding to 67 attomol in a sample volume of ~ 15 nL) was obtained. The merit of the CE-MS approach was demonstrated by analysis of bovine serum albumin (BSA) tryptic peptides. A well-resolved separation profile was achieved and comparable sequence coverage was obtained by the CE-MS method (70%) compared to a representative UPLC-MS method (74%). Moreover, very low sample consumption and shorter analysis time makes the CE-MS method more preferable. The CE-MS setup was subsequently used to analyse a mixture of proteins of differing size and complexity consisting of insulin, tissue factor, α-synuclein and BSA. Efficient separation with very narrow peak widths, comparable to those obtained for small peptides, and high quality protein ESI mass spectra could be achieved using only a small amount of sample (30 fmol). Our findings underscore a considerable potential of the current CE-MS setup for high-sensitivity analysis of samples containing complex mixtures of intact proteins. Furthermore, the method was successfully applied to analyze a sample containing only 30 fmol of an intact therapeutic mAb (Rituximab) suggesting significant real-world applicability in biopharmaceutical research. Finally, by employing a native CE buffer (ammonium acetate, pH 6), we show that the CE-MS interface facilitates gentle ESI of proteins, opening up for native MS applications in combination with ion mobility and other gas-phase techniques to probe the conformational properties of proteins analysed by CE-MS.Novel AspectA novel, simple and low-cost sheathless CE-MS interface for fast and sensitive analysis of complex peptide/protein mixtures

AB - IntroductionCE-MS has shown considerable potential in protein research and pharmaceutical development, however, technical challenges of hyphenation of CE with MS have limited its use. Here, we have developed a sensitive CE-MS setup for peptide and protein analysis, that employs a novel and low-cost sheathless CE-MS interface and a poly(ethyleneglycol)-coated capillary. Using the CE-MS setup, we have achieved fast and efficient separation and sensitive mass analysis of individual components of a complex sample of pharmaceutically relevant human proteins including insulin, tissue factor, α-synuclein and a tryptic digest of bovine serum albumin. We have furthermore compared the performance of the CE-MS technique to UPLC-MS and demonstrate significant advantages of the CE-MS setup in terms of analysis time, sample consumption and separation capacity.MethodsThe sheathless CE-MS interface is based on the generation of an electric contact for both CE and ESI voltage through a narrow fracture close to the end of the CE capillary. The interface was mounted on a Nano ESI source of a hybrid Q-TOF instrument. To eliminate unwanted surface adsorption and/or interactions between polypeptide analytes and the inner capillary wall (L= 65 cm, 50 µm I.D.), a PEG coated capillary was made using novel covalent and electrostatically adsorbed coating method. Background electrolyte solution containing 0.1% formic acid was used throughout unless specified otherwise. Samples were injected hydrodynamically (50 mbar, 10 s) and the applied separation voltage was +30 kV for 12 min. No pre-treatment of sample mixtures analyzed was needed.Preliminary DataThe simple and low-cost interface design allowed the generation of a stable ESI spray capable of ionization at low nanoliter flow-rates (45-90 nL/min) for high sensitivity MS analysis. By analysis of a model peptide (Leucine Enkephalin), a limit of detection (LOD) of 0.045 pmol/µL (corresponding to 67 attomol in a sample volume of ~ 15 nL) was obtained. The merit of the CE-MS approach was demonstrated by analysis of bovine serum albumin (BSA) tryptic peptides. A well-resolved separation profile was achieved and comparable sequence coverage was obtained by the CE-MS method (70%) compared to a representative UPLC-MS method (74%). Moreover, very low sample consumption and shorter analysis time makes the CE-MS method more preferable. The CE-MS setup was subsequently used to analyse a mixture of proteins of differing size and complexity consisting of insulin, tissue factor, α-synuclein and BSA. Efficient separation with very narrow peak widths, comparable to those obtained for small peptides, and high quality protein ESI mass spectra could be achieved using only a small amount of sample (30 fmol). Our findings underscore a considerable potential of the current CE-MS setup for high-sensitivity analysis of samples containing complex mixtures of intact proteins. Furthermore, the method was successfully applied to analyze a sample containing only 30 fmol of an intact therapeutic mAb (Rituximab) suggesting significant real-world applicability in biopharmaceutical research. Finally, by employing a native CE buffer (ammonium acetate, pH 6), we show that the CE-MS interface facilitates gentle ESI of proteins, opening up for native MS applications in combination with ion mobility and other gas-phase techniques to probe the conformational properties of proteins analysed by CE-MS.Novel AspectA novel, simple and low-cost sheathless CE-MS interface for fast and sensitive analysis of complex peptide/protein mixtures

UR - http://www.asms.org/docs/default-source/conference/brochure_64thasms_sanantonio_v6.pdf?sfvrsn=2

M3 - Conference abstract for conference

T2 - 64th ASMS Conference

Y2 - 5 June 2016 through 9 June 2016

ER -

ID: 164469956