A simple sheathless CE-MS interface with a sub-micrometer electrical contact fracture for sensitive analysis of peptide and protein samples

Research output: Contribution to journalJournal articleResearchpeer-review

Online coupling of capillary electrophoresis (CE) to electrospray ionization mass spectrometry (MS) has shown considerable potential, however, technical challenges have limited its use. In this study, we have developed a simple and sensitive sheathless CE-MS interface based on the novel concept of forming a sub-micrometer fracture directly in the capillary. The simple interface design allowed the generation of a stable ESI spray capable of ionization at low nanoliter flow-rates (45–90 nL/min) for high sensitivity MS analysis of challenging samples like those containing proteins and peptides. By analysis of a model peptide (leucine enkephalin), a limit of detection (LOD) of 0.045 pmol/μL (corresponding to 67 attomol in a sample volume of ∼15 nL) was obtained. The merit of the CE-MS approach was demonstrated by analysis of bovine serum albumin (BSA) tryptic peptides. A well-resolved separation profile was achieved and comparable sequence coverage was obtained by the CE-MS method (73%) compared to a representative UPLC-MS method (77%). The CE-MS interface was subsequently used to analyse a more complex sample of pharmaceutically relevant human proteins including insulin, tissue factor and α-synuclein. Efficient separation and protein ESI mass spectra of adequate quality could be achieved using only a small amount of sample (30 fmol). In addition, analysis of ubiquitin samples under both native and denatured conditions, indicate that the CE-MS setup can facilitate native MS applications to probe the conformational properties of proteins. Thus, the described CE-MS setup should be useful for a wide range of high-sensitivity applications in protein research.
Original languageEnglish
JournalAnalytica Chimica Acta
Volume936
Pages (from-to)157–167
Number of pages11
ISSN0003-2670
DOIs
Publication statusPublished - 2016

ID: 164347715