Construct design, production, and characterization of Plasmodium falciparum 48/45 R0.6C subunit protein produced in Lactococcus lactis as candidate vaccine

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Construct design, production, and characterization of Plasmodium falciparum 48/45 R0.6C subunit protein produced in Lactococcus lactis as candidate vaccine. / Singh, Susheel K; Roeffen, Will; Mistarz, Ulrik H; Chourasia, Bishwanath Kumar; Yang, Fen; Rand, Kasper D; Sauerwein, Robert W; Theisen, Michael.

In: Microbial Cell Factories, Vol. 16, No. 1, 97, 2017.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Singh, SK, Roeffen, W, Mistarz, UH, Chourasia, BK, Yang, F, Rand, KD, Sauerwein, RW & Theisen, M 2017, 'Construct design, production, and characterization of Plasmodium falciparum 48/45 R0.6C subunit protein produced in Lactococcus lactis as candidate vaccine', Microbial Cell Factories, vol. 16, no. 1, 97. https://doi.org/10.1186/s12934-017-0710-0

APA

Singh, S. K., Roeffen, W., Mistarz, U. H., Chourasia, B. K., Yang, F., Rand, K. D., Sauerwein, R. W., & Theisen, M. (2017). Construct design, production, and characterization of Plasmodium falciparum 48/45 R0.6C subunit protein produced in Lactococcus lactis as candidate vaccine. Microbial Cell Factories, 16(1), [97]. https://doi.org/10.1186/s12934-017-0710-0

Vancouver

Singh SK, Roeffen W, Mistarz UH, Chourasia BK, Yang F, Rand KD et al. Construct design, production, and characterization of Plasmodium falciparum 48/45 R0.6C subunit protein produced in Lactococcus lactis as candidate vaccine. Microbial Cell Factories. 2017;16(1). 97. https://doi.org/10.1186/s12934-017-0710-0

Author

Singh, Susheel K ; Roeffen, Will ; Mistarz, Ulrik H ; Chourasia, Bishwanath Kumar ; Yang, Fen ; Rand, Kasper D ; Sauerwein, Robert W ; Theisen, Michael. / Construct design, production, and characterization of Plasmodium falciparum 48/45 R0.6C subunit protein produced in Lactococcus lactis as candidate vaccine. In: Microbial Cell Factories. 2017 ; Vol. 16, No. 1.

Bibtex

@article{203b3d6612e34a9783b7888d950b7af6,
title = "Construct design, production, and characterization of Plasmodium falciparum 48/45 R0.6C subunit protein produced in Lactococcus lactis as candidate vaccine",
abstract = "BACKGROUND: The sexual stages of Plasmodium falciparum are responsible for the spread of the parasite in malaria endemic areas. The cysteine-rich Pfs48/45 protein, exposed on the surface of sexual stages, is one of the most advanced antigens for inclusion into a vaccine that will block transmission. However, clinical Pfs48/45 sub-unit vaccine development has been hampered by the inability to produce high yields of recombinant protein as the native structure is required for the induction of functional transmission-blocking (TB) antibodies. We have investigated a downstream purification process of a sub-unit (R0.6C) fragment representing the C-terminal 6-Cys domain of Pfs48/45 (6C) genetically fused to the R0 region (R0) of asexual stage Glutamate Rich Protein expressed in Lactococcus lactis.RESULTS: A series of R0.6C fusion proteins containing features, which aim to increase expression levels or to facilitate protein purification, were evaluated at small scale. None of these modifications affected the overall yield of recombinant protein. Consequently, R0.6C with a C-terminal his tag was used for upstream and downstream process development. A simple work-flow was developed consisting of batch fermentation followed by two purification steps. As such, the recombinant protein was purified to homogeneity. The composition of the final product was verified by HPLC, mass spectrometry, SDS-PAGE and Western blotting with conformation dependent antibodies against Pfs48/45. The recombinant protein induced high levels of functional TB antibodies in rats.CONCLUSIONS: The established production and purification process of the R0.6C fusion protein provide a strong basis for further clinical development of this candidate transmission blocking malaria vaccine.",
author = "Singh, {Susheel K} and Will Roeffen and Mistarz, {Ulrik H} and Chourasia, {Bishwanath Kumar} and Fen Yang and Rand, {Kasper D} and Sauerwein, {Robert W} and Michael Theisen",
year = "2017",
doi = "10.1186/s12934-017-0710-0",
language = "English",
volume = "16",
journal = "Microbial Cell",
issn = "1475-2859",
publisher = "BioMed Central",
number = "1",

}

RIS

TY - JOUR

T1 - Construct design, production, and characterization of Plasmodium falciparum 48/45 R0.6C subunit protein produced in Lactococcus lactis as candidate vaccine

AU - Singh, Susheel K

AU - Roeffen, Will

AU - Mistarz, Ulrik H

AU - Chourasia, Bishwanath Kumar

AU - Yang, Fen

AU - Rand, Kasper D

AU - Sauerwein, Robert W

AU - Theisen, Michael

PY - 2017

Y1 - 2017

N2 - BACKGROUND: The sexual stages of Plasmodium falciparum are responsible for the spread of the parasite in malaria endemic areas. The cysteine-rich Pfs48/45 protein, exposed on the surface of sexual stages, is one of the most advanced antigens for inclusion into a vaccine that will block transmission. However, clinical Pfs48/45 sub-unit vaccine development has been hampered by the inability to produce high yields of recombinant protein as the native structure is required for the induction of functional transmission-blocking (TB) antibodies. We have investigated a downstream purification process of a sub-unit (R0.6C) fragment representing the C-terminal 6-Cys domain of Pfs48/45 (6C) genetically fused to the R0 region (R0) of asexual stage Glutamate Rich Protein expressed in Lactococcus lactis.RESULTS: A series of R0.6C fusion proteins containing features, which aim to increase expression levels or to facilitate protein purification, were evaluated at small scale. None of these modifications affected the overall yield of recombinant protein. Consequently, R0.6C with a C-terminal his tag was used for upstream and downstream process development. A simple work-flow was developed consisting of batch fermentation followed by two purification steps. As such, the recombinant protein was purified to homogeneity. The composition of the final product was verified by HPLC, mass spectrometry, SDS-PAGE and Western blotting with conformation dependent antibodies against Pfs48/45. The recombinant protein induced high levels of functional TB antibodies in rats.CONCLUSIONS: The established production and purification process of the R0.6C fusion protein provide a strong basis for further clinical development of this candidate transmission blocking malaria vaccine.

AB - BACKGROUND: The sexual stages of Plasmodium falciparum are responsible for the spread of the parasite in malaria endemic areas. The cysteine-rich Pfs48/45 protein, exposed on the surface of sexual stages, is one of the most advanced antigens for inclusion into a vaccine that will block transmission. However, clinical Pfs48/45 sub-unit vaccine development has been hampered by the inability to produce high yields of recombinant protein as the native structure is required for the induction of functional transmission-blocking (TB) antibodies. We have investigated a downstream purification process of a sub-unit (R0.6C) fragment representing the C-terminal 6-Cys domain of Pfs48/45 (6C) genetically fused to the R0 region (R0) of asexual stage Glutamate Rich Protein expressed in Lactococcus lactis.RESULTS: A series of R0.6C fusion proteins containing features, which aim to increase expression levels or to facilitate protein purification, were evaluated at small scale. None of these modifications affected the overall yield of recombinant protein. Consequently, R0.6C with a C-terminal his tag was used for upstream and downstream process development. A simple work-flow was developed consisting of batch fermentation followed by two purification steps. As such, the recombinant protein was purified to homogeneity. The composition of the final product was verified by HPLC, mass spectrometry, SDS-PAGE and Western blotting with conformation dependent antibodies against Pfs48/45. The recombinant protein induced high levels of functional TB antibodies in rats.CONCLUSIONS: The established production and purification process of the R0.6C fusion protein provide a strong basis for further clinical development of this candidate transmission blocking malaria vaccine.

U2 - 10.1186/s12934-017-0710-0

DO - 10.1186/s12934-017-0710-0

M3 - Journal article

C2 - 28569168

VL - 16

JO - Microbial Cell

JF - Microbial Cell

SN - 1475-2859

IS - 1

M1 - 97

ER -

ID: 179015134