Analytical method development for powder characterization: Visualization of the critical drug loading affecting the processability of a formulation for direct compression

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Analytical method development for powder characterization: Visualization of the critical drug loading affecting the processability of a formulation for direct compression. / Hirschberg, Cosima; Sun, Calvin Changquan ; Rantanen, Jukka.

In: Journal of Pharmaceutical and Biomedical Analysis, Vol. 128, 05.09.2016, p. 462-468.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Hirschberg, C, Sun, CC & Rantanen, J 2016, 'Analytical method development for powder characterization: Visualization of the critical drug loading affecting the processability of a formulation for direct compression', Journal of Pharmaceutical and Biomedical Analysis, vol. 128, pp. 462-468. https://doi.org/10.1016/j.jpba.2016.06.014

APA

Hirschberg, C., Sun, C. C., & Rantanen, J. (2016). Analytical method development for powder characterization: Visualization of the critical drug loading affecting the processability of a formulation for direct compression. Journal of Pharmaceutical and Biomedical Analysis, 128, 462-468. https://doi.org/10.1016/j.jpba.2016.06.014

Vancouver

Hirschberg C, Sun CC, Rantanen J. Analytical method development for powder characterization: Visualization of the critical drug loading affecting the processability of a formulation for direct compression. Journal of Pharmaceutical and Biomedical Analysis. 2016 Sep 5;128:462-468. https://doi.org/10.1016/j.jpba.2016.06.014

Author

Hirschberg, Cosima ; Sun, Calvin Changquan ; Rantanen, Jukka. / Analytical method development for powder characterization: Visualization of the critical drug loading affecting the processability of a formulation for direct compression. In: Journal of Pharmaceutical and Biomedical Analysis. 2016 ; Vol. 128. pp. 462-468.

Bibtex

@article{a618e21c953d45ed9823b18e47582ede,
title = "Analytical method development for powder characterization: Visualization of the critical drug loading affecting the processability of a formulation for direct compression",
abstract = "Characterization of particulate systems (powders) is one of the remaining scientific challenges. Evaluation of powder behaviour is often empirical and the decision-making processes are experience-based. There is a need for development of analytical instrumentation enabling more fundamental understanding of powder behaviour. Flowability and tabletability, two key factors in commercial scale manufacturing of tablets with direct compression (DC) approach, were analysed for formulations containing increasing amounts of several model active pharmaceutical ingredients (APIs). Flowability was investigated using a ring shear tester and tablets were prepared at four different compression pressures using a single punch tablet press. Thereby, a material sparing screening approach was developed to estimate the influence of APIs on behaviour of a given DC formulation. Additionally, this approach is useful for estimating the low threshold amount of API (wt%), at which the properties of an API start affecting the powder behaviour of a given formulation (API-excipient mixture). This threshold will be referred to as critical drug loading. The flowability of microcrystalline cellulose (reference grade pH 102) was used as a threshold for adequate flowability of model formulations. The threshold for tablet tensile strength was set to 2 MPa.Simultaneous visual presentation of both- flowability and tabletability were used for a fast evaluation of manufacturability of a given formulation. The results confirmed that flowability is more sensitive to drug loading than tabletability, and that the critical drug loading for a DC formulation is strongly affected by particulate properties of API. For example, decreasing the particle size of paracetamol led to rapid decrease in flowability index, whereas the tabletability was not affected.",
author = "Cosima Hirschberg and Sun, {Calvin Changquan} and Jukka Rantanen",
year = "2016",
month = sep,
day = "5",
doi = "10.1016/j.jpba.2016.06.014",
language = "English",
volume = "128",
pages = "462--468",
journal = "Journal of Pharmaceutical and Biomedical Analysis",
issn = "0731-7085",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - Analytical method development for powder characterization: Visualization of the critical drug loading affecting the processability of a formulation for direct compression

AU - Hirschberg, Cosima

AU - Sun, Calvin Changquan

AU - Rantanen, Jukka

PY - 2016/9/5

Y1 - 2016/9/5

N2 - Characterization of particulate systems (powders) is one of the remaining scientific challenges. Evaluation of powder behaviour is often empirical and the decision-making processes are experience-based. There is a need for development of analytical instrumentation enabling more fundamental understanding of powder behaviour. Flowability and tabletability, two key factors in commercial scale manufacturing of tablets with direct compression (DC) approach, were analysed for formulations containing increasing amounts of several model active pharmaceutical ingredients (APIs). Flowability was investigated using a ring shear tester and tablets were prepared at four different compression pressures using a single punch tablet press. Thereby, a material sparing screening approach was developed to estimate the influence of APIs on behaviour of a given DC formulation. Additionally, this approach is useful for estimating the low threshold amount of API (wt%), at which the properties of an API start affecting the powder behaviour of a given formulation (API-excipient mixture). This threshold will be referred to as critical drug loading. The flowability of microcrystalline cellulose (reference grade pH 102) was used as a threshold for adequate flowability of model formulations. The threshold for tablet tensile strength was set to 2 MPa.Simultaneous visual presentation of both- flowability and tabletability were used for a fast evaluation of manufacturability of a given formulation. The results confirmed that flowability is more sensitive to drug loading than tabletability, and that the critical drug loading for a DC formulation is strongly affected by particulate properties of API. For example, decreasing the particle size of paracetamol led to rapid decrease in flowability index, whereas the tabletability was not affected.

AB - Characterization of particulate systems (powders) is one of the remaining scientific challenges. Evaluation of powder behaviour is often empirical and the decision-making processes are experience-based. There is a need for development of analytical instrumentation enabling more fundamental understanding of powder behaviour. Flowability and tabletability, two key factors in commercial scale manufacturing of tablets with direct compression (DC) approach, were analysed for formulations containing increasing amounts of several model active pharmaceutical ingredients (APIs). Flowability was investigated using a ring shear tester and tablets were prepared at four different compression pressures using a single punch tablet press. Thereby, a material sparing screening approach was developed to estimate the influence of APIs on behaviour of a given DC formulation. Additionally, this approach is useful for estimating the low threshold amount of API (wt%), at which the properties of an API start affecting the powder behaviour of a given formulation (API-excipient mixture). This threshold will be referred to as critical drug loading. The flowability of microcrystalline cellulose (reference grade pH 102) was used as a threshold for adequate flowability of model formulations. The threshold for tablet tensile strength was set to 2 MPa.Simultaneous visual presentation of both- flowability and tabletability were used for a fast evaluation of manufacturability of a given formulation. The results confirmed that flowability is more sensitive to drug loading than tabletability, and that the critical drug loading for a DC formulation is strongly affected by particulate properties of API. For example, decreasing the particle size of paracetamol led to rapid decrease in flowability index, whereas the tabletability was not affected.

U2 - 10.1016/j.jpba.2016.06.014

DO - 10.1016/j.jpba.2016.06.014

M3 - Journal article

C2 - 27368089

VL - 128

SP - 462

EP - 468

JO - Journal of Pharmaceutical and Biomedical Analysis

JF - Journal of Pharmaceutical and Biomedical Analysis

SN - 0731-7085

ER -

ID: 167226695